已知:关于x的一元二次方程-x2+(m+1)x+(m+2)=0(m>0).
(1)求证:该方程有两个不相等的实数根;
(2)当抛物线y=-x2+(m+1)x+(m+2)经过点3,0),求该抛物线的表达式;
(3)在(2)的条件下,记抛物线y=-x2+(m+1)x+(m+2)在第一象限之间的部分为图象G,如果直线
y=k(x+1)+4与图象G有公共点,请结合函数的图象,求直线y=k(x+1)+4与y轴交点的纵坐标t的取值
范围.
先化简,再求值:÷
-
,其中
=-
.
解不等式组,把它的解集在数轴上表示出来,并求其整数解.
已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).
(1)确定上述正比例函数和反比例函数的表达式
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)M(m,n)是反比例函数图象上的一个动点,其中0<m<3,过点M作直线MB//x轴,交y轴于点B;过点A作直线AC//y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为3时,请判断线段BM与DM有何数量关系,并说明理由.
为执行中央“节能减排,美化环境,建设美丽新农村” 的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃 料问题.两种型号沼
气池的占地面积、使用农户数及造价见下表:
型号 |
占地面积 (单位:m2/个) |
使用农户数 (单位:户/个) |
造价 (单位:万元/个) |
A |
15 |
18 |
2 |
B |
20 |
30 |
3 |
已知可供建造沼气池的占地面积不超过370m2,该村农户共有498户.
(1)满足条件的方案共有哪几种?写出解答过程.
(2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?
如图,已知A(4,a),B(-2,-4)是一次函数y=k x+b 的图象和反比例函数的图象的交点.
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.
(3)根据图象求出使一次函数的值大于反比例函数的值时,x的取值范围.