(本小题满分分)
已知在
时有极大值6,在
时有极小值,求
的值;并求
在区间[-3,3]上的最大值和最小值.
(本小题满分12分)
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
.(本小题满分12分)
如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E,F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=
AD.
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.
(本小题满分12分)
已知公比大于1的等比数列{}满足:
+
+
=28,且
+2是
和
的等差中项.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)若=
,求{
}的前n项和
.
(本小题满分12分)
已知函数的定义域为
,且同时满足下列条件:
(1)是奇函数;
(2)在定义域上单调递减;
(3)
求的取值范围
(本小题满分12分)
已知,其中
,
如果A∩B=B,求实数的取值范围.