(年黑龙江牡丹江农垦10分)某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)试确定y与x之间的函数关系式;
(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?
(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.
如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.
(1)已知两条抛物线①:y=x2+2x-1,②:y=-x2+2x+1,判断这两条抛物线是否关联,并说明理由;
(2)抛物线C1:y=(x+1)2-2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.
(1)如图1,直线//
//
//
,且
与
,
与
之间的距离均为1,
与
之间的距离为2,现将正方形ABCD如图放置,使其四个顶点分别在四条直线上,求正方形的边长;
(2)在(1)的条件下,探究:将正方形ABCD改为菱形ABCD,如图2,当时,求菱形的边长.
如图,以O为圆心的度数为60°,∠BOE=45°,DA⊥OB,EB⊥OB.
(1)的值为;
(2)若OE与交于点M,OC平分∠BOE,连接CM.求证:CM为⊙O的切线;
(3)在(2)的条件下,若BC=1,求tan∠BCO的值.
甲、乙两名运动员进行长跑训练,两人距终点的路程(米)与跑步时间
之间的函数关系如图所示,根据图象所提供的信息解答问题:
(1)他们在进行米的长跑训练,在0<<15的时间内,速度较快的人是(填“甲”或“乙”);
(2)求乙距终点的路程(米)与跑步时间
之间的函数关系式;
(3)当=15时,两人相距多少米?
(4)在15<<20的时间段内,求两人速度之差.
“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.