游客
题文

(年四川内江12分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

在课外科学活动中,小明同学在相同条件下分3次做了某种作物种子发芽的实验,每次所用的种子数、每次的发芽率(发芽率×100%)分别如图1,图2所示:

(1)求3次实验的种子平均发芽率;
(2)如果要想得到900粒发芽的种子,根据上面的计算结果,估计要用多少粒该种作物种子?

(本小题满分12分)
如图,RtΔABC中,∠ACB=90°,AC=4,BA=5,点PAC上的动点(P不与A、C重合)PQAB,垂足为Q.设PC=xPQ= y

⑴求yx的函数关系式;
⑵试确定此RtΔABC内切圆I的半径,并探求x为何值时,直线PQ与这个内切圆I相切?
⑶若0<x<1,试判断以P为圆心,半径为y的圆与⊙I能否相内切,若能求出相应的x的值,若不能,请说明理由.

(本小题满分12分)如图,已知抛物线关于轴对称,并与轴交于点M,与轴交于点AB.

(1)求出的解析式,试猜想出一般形式关于轴对称的二次函数解析式(不要求证明);
(2)若AB的中点是C,求
(3)如果一次函数过点,且与抛物线,相交于另一点,如果,且,求的值。

(本小题满分10分)
△ABC中,AC=BC.以BC为直径作⊙O交AB于点D,交AC于点G.直线DF⊥AC,垂足为F,交CB的延长线于点E.

(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)如果BC=10,AB=12,求CG的长.

(本小题满分10分)
在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:

第一步:对折矩形纸片ABCD,使ADBC重合,得到折痕EF,把纸片展开(如图1);
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2)
请解答以下问题:
(1)如图2,若延长MNBCP,△BMP是什么三角形?请证明你的结论.
(2)在图2中,若AB=aBC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号