(年浙江温州12分)八(1)班五位同学参加学校举办的数学竞赛,试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分。赛后A,B, C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:
参赛同学 |
答对题数 |
答错题数 |
未答题数 |
A |
19 |
0 |
1 |
B |
17 |
2 |
1 |
C |
15 |
2 |
3 |
D |
17 |
1 |
2 |
E |
/ |
/ |
7 |
(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;
(2)最后获知:A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.
①求E同学的答对题数和答错题数;
②经计算,A,B,C,D四位同学实际成绩平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).
如图,在一面靠墙的空地上用长为24米的篱笆围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB为x米,面积为y平方米.
(1)求y与x之间的函数关系式
(2)当x取何值时所围成的花圃的面积最大?最大面积是多少?
已知AB是⊙O的直径,弦CD⊥AB,垂足为P,
(1)若半径为5,CD=8,求OP及BD的长度.
(2)若,求
的度数.
如图,小华和小丽两人玩游戏,她们准备了A、B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜.
(1)用树状图或列表法求小华、小丽获胜的概率;
(2)这个游戏规则对双方公平吗?请判断并说明理由.
如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.
(1)画出将△OAB绕原点逆时针旋转90°后所得的△OA1B1,并写出点A1、B1的坐标;
(2)作△OAB关于原点O的中心对称图形,写出对称点
、
的坐标.
将分别标有数学2,3,5的三张质地,大小完全一样的卡片背面朝上放在桌面上,
(1)随机抽取一张,求抽到奇数的概率;
(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并求出抽取到的两位数恰好是35的概率.