(年广东广州14分)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.
(1)求抛物线的解析式和顶点C的坐标;
(2)当∠APB为钝角时,求m的取值范围;
(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<
)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首尾依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.
已知关于x的方程.
(1)当方程有两个不相等的实数根时,求k的取值范围;
(2)当方程的一个根是2时,求k的值.
计算:.
如图,平面直角坐标系中,O为坐标原点,等腰梯形ABCD四个顶点都在抛物线y=ax2+bx+c上,其中点A、B在x轴上,点D在轴上,且CD∥AB, 已知S梯形ABCD=8,tan∠DAO=4,点B的坐标为(2,0),点E坐标为(0,-1).
(1)求此抛物线的解析式;
(2)若△OEB从点B开始以个单位每秒的速度沿BD向终点D匀速运动. 设运动时间为t秒,在整个运动过程中,当边OE与线段AD相交时,求运动时间t的取值范围;
(3)能否将△OEB绕平面内某点旋转90°后使得△OEB的两个顶点落在x轴上方的抛物线上,若能,请直接写出旋转中心的坐标,若不能,请说明理由.
如图,边长为4的等边△AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长度的速度由点O向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.在点P的运动过程中,线段BP的中点为点E,将线段PE绕点P按顺时针方向旋转60º得PC.
(1)当点P运动到线段OA的中点时, 点C的坐标为 ;
(2)在点P从点O到点A的运动过程中,用含t的代数式表示点C的坐标;
(3)在点P从点O到点A的运动过程中,求出点C所经过的路径长.
在日常生活中,我们经常有目的地收集数据,分析数据,作出预测.
(1)下图是小芳家2011年全年月用电量的条形统计图. 根据图中提供的信息,回答下列问题:
①2011年小芳家月用电量最小的是月,四个季度中用电量最大的是第季度;
②求2011年5月至6月用电量的月增长率;
(2)今年小芳家添置了新电器.已知今年5月份的用电量是120千瓦时,根据2011年5月至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时.假设今年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,预计小芳家今年6月份的用电
量是多少千瓦时?