(年甘肃天水12分)如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:
(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME的度数.
(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.
(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.
已知:如图,点D是∠BAC内的一点,连接BD、DC,∠A=30°,∠B+∠C=70°求∠BDC的度数.
已知:如图AB∥EF。说明:∠BCF=∠B+∠F
解:经过C画CD∥AB
∴∠B=∠1 ()
∵AB∥EF
而CD∥AB(画图)
∴CD∥EF ()
∴∠F=_______()
∴∠1+∠2=∠B+∠F()
即∠BCF=∠B+∠F
求不等式组的整数解.
已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),并且当两直线同时相交于y轴正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l1交于点K,如图所示.
(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.
某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为50米的篱笆围成。已知墙长为26米(如图所示),设这个苗圃园平行于墙的一边的长为米。(1)若垂直于墙的一边长为
米,直接写出
与
的函数关系式及其自变量
的取值范围;(2)当
为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于300平方米时,试结合函数图象,求出
的取值范围。