(年广西玉林、防城港12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.
(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;
(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.
①求此抛物线的解析式;
②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.
已知一个等腰三角形的三边长分别为x,2x,5x-3,求这个三角形的周长。
如图 ,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.
求证:AC是BD的中垂线。
如图,BD⊥AC,CE⊥AB,垂足分别为点D和点E,BD与CE相交于点F,BF=CF.求证:点F在∠BAC的平分线上.
已知△ABC,用直尺和圆规做下列图形:(保留作图痕迹并写出结论)
(1)AC边上的中线;
(2)角平分线AM
如图,长方体的底面是边长为2cm的正方形,高是6cm.
(1)如果用一根细线从点A开始经过4个侧面围绕一圈到达点B.那么所用的细线最短长度是多少厘米?
(2)如果从A点开始经过4个侧面缠绕2圈到达点B,那么所用细线最短长度是多少厘米?