(年湖南湘西22分)如图,抛物线y=ax2+bx+c关于y轴对称,它的顶点在坐标原点O,点B(2,)和点C(﹣3,﹣3)两点均在抛物线上,点F(0,
)在y轴上,过点(0,
)作直线l与x轴平行.
(1)求抛物线的解析式和直线BC的解析式.
(2)设点D(x,y)是线段BC上的一个动点(点D不与B,C重合),过点D作x轴的垂线,与抛物线交于点G.设线段GD的长度为h,求h与x之间的函数关系式,并求出当x为何值时,线段GD的长度h最大,最大长度h的值是多少?
(3)若点P(m,n)是抛物线上位于第三象限的一个动点,连接PF并延长,交抛物线于另一点Q,过点Q作QS⊥l,垂足为点S,过点P作PN⊥l,垂足为点N,试判断△FNS的形状,并说明理由;
(4)若点A(﹣2,t)在线段BC上,点M为抛物线上的一个动点,连接AF,当点M在何位置时,MF+MA的值最小,请直接写出此时点M的坐标与MF+MA的最小值.
如图,在 中, 于 ,设 , .
求证:(1) ;
(2) ;
(3)以 为边的三角形是直角三角形.
张老师在一次“探究性学习”课中,设计了如下数表.
(1)请你分别观察 与 之间的关系,并用含自然数 的代数式表示: _________, _________, _________.
(2)猜想:以 为边的三角形是否为直角三角形?并证明你的猜想.
恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷 和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路 同侧, 到直线 的距离分别为 和 ,要在沪渝高速公路旁修建一服务区 ,向 两景区运送游客.小民设计了两种方案.图①是方案一的示意图( 与直线 垂直,垂足为 到 的距离之和 ;图②是方案二的示意图(点 关于直线 的对称点是 ,连接 交直线 于点 到 的距离之和 .
(1)求 ,并比较它们的大小;
(2)请你说明 的值为最小;
(3)拟建的恩施到张家界高速公路 与沪渝高速公路垂直,建立如图③所示的直角坐标系, 到直线 的距离为 ,请你在 旁和 旁各修建一服务区 ,使 组成的四边形的周长最小,并求出这个最小值.
如图, 中, 边上有 个不同点, ,记 ,求 的值.
如图。(1)如图①以 的边 为边分别向外作正方形 和正方形 ,连接 ,试判断 与 面积之间的关系,并说明理由.
(2)园林小路,曲径通幽,如图②所示。小路由白色的正方形大理石和黑色的三角形大理石铺成.已知中间的所有正方形的面积之和是 ,内圈的所有三角形的面积之和是 ,这条小路一共占地多少 ?