(年广西北海12分)如图(1),抛物线与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).
(1)求此抛物线的解析式;
(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;
②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.
如图,已知AB∥CD,AD,BC相交于E,F为EC上一点,且∠EAF=∠C.
求证:(1) ∠EAF=∠B; (2)AF2=FE·FB
8分)有些图形既是轴对称图形又是中心对称图形,比如正方形。请你画出另外三种有此性质的图形(画图工具不限,不写画法)。
图一:图二:图三:
如图,梯形
中,
∥
,
,
,
.动点
从点
出发,以每秒
个单位长度的速度在线段
上运动;动点
同时从点
出发,以每秒
个单位长度的速度在线段
上运动.以
为边作等边△
,与梯形
在线段
的同侧.设点
、
运动时间为
,当点
到达
点时,运动结束.
(1)当等边△的边
恰好经过点
时,求运动时间
的值;
(2)在整个运动过程中,设等边△与梯形
的重合部分面积为
,请直接写出
与
之间的函数关系式和相应的自变量
的取值范围;
(3)如图,当点
到达
点时,将等边△
绕点
旋转
(
),
直线分别与直线
、直线
交于点
、
.是否存在这样的
,使△
为等腰三角形?若存在,请求出此时线段
的长度;若不存在,请说明理由.
北京红螺食品公司生产的各种果脯一直受到大众的喜爱,尤其是该公司生产的桃脯特别香甜可口.但由于该公司某经销点存货有限,在2011年1到5月该经销点每月桃脯的销量(千克)与月份
的关系如下表所示:
![]() |
1 |
2 |
3 |
4 |
5 |
![]() |
150 |
75 |
50 |
37.5 |
30 |
6月份由于鲜桃的大量上市,红螺公司进行大量采购与加工,所以在6到12月该经销点每月桃脯的销量(千克)与月份
的函数关系为:
;
已知在1到5月该经销点每千克桃脯的价格(元)与月份
的函数关系为:
;而在6到12月每千克桃脯的价格
(元)与月份
的关系满足如下函数图像;
(1)请观察图中的表格,用所学过的一次函数、反比例函数、二次函数的有关知识直接写出与
的函数关系式,根据如图所示的变换趋势,直接写出
与
之间满足的一次函数关系式,并注明x的取值范围;
(2)试求出该经销点在哪个月桃脯的销售额最大,最大为多少元;
(3)为满足市场所需,红螺公司决定在2012年将此种桃脯作为海外出口的首推品,所以在今年1到4月该经销点在去年获得最大销售额的基础上,每月的总销量都上涨了,且其中的
是用于出口,剩余部分由经销点国内销售,每月出口桃脯的售价每千克降低了
,而国内销售的桃脯价格每千克上涨了
,这样该经销点1到4月销售桃脯的总额为142560元,试求出
的值.
(参考数据:,
,
,
)
已知:如图,在矩形中,
是对角线.点
为矩形外一点且满足
,
.
交
于点
,连接
,过点
作
交
于
.
(1)若,求矩形
的面积;
(2)若,求证:
.