游客
题文

(2014年贵州贵阳12分)如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点.若AB=6cm.

(1)AE的长为        cm;
(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;
(3)求点D′到BC的距离.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

一般地,对于任意的实数 x ,可记 x = x + x ,其中符号 x 叫做 x 的整数部分,表示不大于 x 的整数(例如 3 = 3 3 14 = 3 - 3 14 = - 4 );符号 x 叫做 x 的小数部分,即 0 x < 1 (例如 3 . 14 = 0 . 14 - 3 . 14 = 0 . 86 ).试求出所有的 x ,使得 13 x + 5 x = 100

货轮上卸下若干只箱子,其总重量为 10 T ,每只箱子的重量不超过 1 T ,为保证能把这些箱子一次运走,问至少需要多少辆载重 3 T 的汽车?

试确定实数 a 的取值范围,使不等式组 x 2 + x + 1 3 > 0 x + 5 a + 4 3 > 4 3 x + 1 + a 恰有两个整数解.

某果品商店进行组合销售,甲种搭配: 2 kg A 水果, 4 kg B 水果;乙种搭配: 3 kg A 水果, 8 kg B 水果, 1 kg C 水果;丙种搭配: 2 kg A 水果, 6 kgB 水果, 1 kg C 水果.已知 A 水果 2 / kg , B 水果 1 . 2 / kg , C 水果 10 / kg .某天该商店销售这三种搭配水果共 441 . 2 元,其中 A 水果的销售额为 116 元,问 C 水果的销售额为多少元?

某班参加一次智力竞赛,共 a , b , c 三题,每题或者得满分或者得零分,其中题 a 满分 20 分,题 b ,题 c 满分分别为 25 分.竞赛结果,每个学生至少答对了一题,三题全答对的有 1 人,答对其中两道题的有 15 人,答对题 a 的人数与答对题 b 的人数之和为 29 人,答对题 a 的人数与答对题 c 的人数之和为 25 ,答对题 b 的人数与答对题 c 的人数之和为 20 .问这个班的平均成绩是多少分?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号