(年四川绵阳14分)如图,抛物线(a≠0)的图象过点M
,顶点坐标为N
,且与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式;
(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;
(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.
(本小题10分)如图,抛物线与x轴的一个交点是A,与y轴的交点是B,且OA、OB(OA<OB)的长是方程
的两个实数根.
(1)求A、B两点的坐标;
(2) 求出此抛物线的的解析式及顶点D的坐标;
(3)求出此抛物线与x轴的另一个交点C的坐标;
(4)在直线BC上是否存在一点P,使四边形PDCO为梯形?若存在,求出P点坐标,若不存在,说明理由.
(本小题8分)如图,AB为⊙O的直径,割线PCD交⊙O于C、D, .
(1)求证:PA是⊙O的切线;
(2)若PA=6,CD=3PC,求PD的长.
(本小题6分) 如图,OA、OC是⊙O的半径,OA=1,且OC⊥OA,点D在弧AC上,弧AD=2弧CD,在OC求一点P,使PA+PD最小,并求这个最小值.
(本小题6分) 如图,在梯形中,
,
,
,
,
,求
的长.
(本小题7分)已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm.(1)求证:AC⊥OD;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.