游客
题文

(2014年福建漳州12分)阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用)
(1)【理解与应用】
如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF的值为       
(2)【类比与推理】
如图3,矩形ABCD的对角线AC, BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA交BD于点F,求PE+PF的值;
(3)【拓展与延伸】
如图4,⊙O的半径为4,A,B,C, D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,已知二次函数 y = a x 2 + bx + 3 的图象与 x 轴分别交于 A ( 1 , 0 ) B ( 3 , 0 ) 两点,与 y 轴交于点 C

(1)求此二次函数解析式;

(2)点 D 为抛物线的顶点,试判断 ΔBCD 的形状,并说明理由;

(3)将直线 BC 向上平移 t ( t > 0 ) 个单位,平移后的直线与抛物线交于 M N 两点(点 M y 轴的右侧),当 ΔAMN 为直角三角形时,求 t 的值.

如图, ΔABC 中, AB = AC BAC = 90 ° ,点 D E 分别在 AB BC 上, EAD = EDA ,点 F DE 的延长线与 AC 的延长线的交点.

(1)求证: DE = EF

(2)判断 BD CF 的数量关系,并说明理由;

(3)若 AB = 3 AE = 5 ,求 BD 的长.

如图, AD ΔABC 的外接圆 O 的直径,点 P BC 延长线上,且满足 PAC = B

(1)求证: PA O 的切线;

(2)弦 CE AD AB 于点 F ,若 AF · AB = 12 ,求 AC 的长.

如图,已知一次函数 y = kx + b 的图象与反比例函数 y = 8 x 的图象交于 A B 两点,点 A 的横坐标是2,点 B 的纵坐标是 2

(1)求一次函数的解析式;

(2)求 ΔAOB 的面积.

某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.

请结合图中信息,解决下列问题:

(1)此次调查中接受调查的人数为  人,其中“非常满意”的人数为  人;

(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众均来自甲片区的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号