游客
题文

(2014年江西抚州10分)【试题背景】
已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2.我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“格线四边形”.

【探究1】
(1)如图1,正方形ABCD为“格线四边形”,BE⊥l于点E,BE的反向延长线交直线k于点F,求正方形ABCD的边长.
【探究2】
(2)矩形ABCD为“格线四边形”,其长:宽=2:1,则矩形ABCD的宽为        .(直接写出结果即可)
【探究3】
如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,AE⊥k于点E,∠AFD=90°,直线DF分别交直线l、k于点G、点M.求证:EC=DF.
【拓展】
(4)如图3,l∥k,等边△ABC的顶点A、B分别落在直线l、k上,AB⊥k于点B,且AB=4,∠ACD=90°,直线CD分别交直线l、k于点G、点M、点D、点E分别是线段GM、BM上的动点,且始终保持AD=AE,DH⊥l于点H.
猜想:DH在什么范围内,BC∥DE?并说明此时BC∥DE的理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点

(1)求这条抛物线的解析式;
(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;

某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
求销售单价为多少元时,每天的销售利润最大?最大利润是多少?

如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.

(1)求一次函数与反比例函数的解析式;
(2)求四边形OCBD的面积.

在一个口袋中有四个完全相同的小球,把它们分别标号为1,2, 3,4.小明和小强采取了不同的摸取方法,分别是:
小明:随机抽取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号;
小强:随机摸取一个小球记下标号,不放回,再随机地抽取一个小球,记下标号.
用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;
分别求出小明和小强两次摸球的标号之和等于5的概率.

解不等式组:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号