(2014年江西抚州10分)【试题背景】
已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2.我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“格线四边形”.
【探究1】
(1)如图1,正方形ABCD为“格线四边形”,BE⊥l于点E,BE的反向延长线交直线k于点F,求正方形ABCD的边长.
【探究2】
(2)矩形ABCD为“格线四边形”,其长:宽=2:1,则矩形ABCD的宽为 .(直接写出结果即可)
【探究3】
如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,AE⊥k于点E,∠AFD=90°,直线DF分别交直线l、k于点G、点M.求证:EC=DF.
【拓展】
(4)如图3,l∥k,等边△ABC的顶点A、B分别落在直线l、k上,AB⊥k于点B,且AB=4,∠ACD=90°,直线CD分别交直线l、k于点G、点M、点D、点E分别是线段GM、BM上的动点,且始终保持AD=AE,DH⊥l于点H.
猜想:DH在什么范围内,BC∥DE?并说明此时BC∥DE的理由.
三条公路围成了一个三角形区域,今要在这个三角形区域内建一果品批发市场到这三条公路的距离相等,试找出批发市场的位置.
如图所示,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.
(1)求△ABC的面积;(2)求CD的长.
对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把叫做P1、P2两点间的直角距离,记作d(P1,P2).
(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;
(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.
如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为α.
(1)当点D′恰好落在EF边上时,求旋转角α的值;
(2)如图2,G为BC中点,且0°<α<90°,求证:GD′=E′D;
(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能说明理由.
已知抛物线,
(1)若求该抛物线与x轴的交点坐标;
(2)若,证明抛物线与x轴有两个交点;
(3)若且抛物线在
区间上的最小值是-3,求b的值.