(本小题满分12分)在某次质量抽测后一数学老师随机抽取了30位(其中男、女各15名)同学的成绩,得出如下表,假设80分为“优秀”,否则为“不优秀”.
性别 |
成绩 |
男 |
83 81 96 68 83 77 86 97 78 64 85 91 90 99 82 |
女 |
74 70 68 86 92 72 76 78 78 64 86 66 79 68 70 |
(1)根据以上数据,试估计本次质量抽测数学科的优秀率(保留小数后三位);
(2)完成下列列联表:
|
优秀 |
不优秀 |
合计 |
男 |
|
|
![]() |
女 |
|
|
![]() |
合计 |
|
|
![]() |
(3)根据(2)中表格数据,利用独立性检验的方法判断,能否在犯错误的概率不超过的前提下,认为“数学成绩”与“性别”有关?(其中
)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
已知定点在抛物线
:
(
>0)上,动点
且
.求证:弦
必过一定点.
已知,椭圆C经过点A(1,),两个焦点为(-1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.
过抛物线(
>0)上一定点
>0),作两条直线分别交抛物线于
,
,当
与
的斜率存在且倾斜角互补时,求出直线
的斜率.
如图1,在Rt△ABC中,∠C=90°,D,E分别是AC,AB上的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
求证: