游客
题文

某山区的一种特产由于运输原因,长期只能在当地销售,当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=(万元)。当地政府拟规划加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投人100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出60万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售。在外地销售的投资收益为:每投入万元,可获利润Q=(万元)。
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,AB为⊙O直径,BC切⊙O于B,CO交⊙O于D,AD的延长线交BC于E,若∠C = 25°,求∠A的度数.

解一元二次方程:
(1)(x+1)2=3(2)3y2+4y+1=0

化简二次根式:
(1)(2)<0) 

问题1已知:如图1,三角形ABC中,点DAB边的中点,AEBCBFAC,垂足分别为点EFAEBF交于点M,连接DEDF.若DE=DF的值为_____.

拓展
问题2已知:如图2,三角形ABC中,CB=CA,点DAB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作MEBCMFAC,垂足分别为点EF,连接DEDF.求证:DE=DF

推广
问题3如图3,若将上面问题2中的条件“CB=CA”变为“CBCA”,其他条件不变,试探究DEDF之间的数量关系,并证明你的结论.

已知:如图1,平面直角坐标系中,四边形OABC是矩形,点AC的坐标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点BC不重合),过点D作直线=-交折线OAB于点E

(1)在点D运动的过程中,若△ODE的面积为S,求S的函数关系式,并写出自变量的取值范围;
(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′C′B′分别交CBOA于点DMO′A′分别交CBOA于点N,E.探究四边形DMEN各边之间的数量关系,并对你的结论加以证明;

(3)问题(2)中的四边形DMEN中,ME的长为____________.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号