定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______。
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.
先化简,再求值: ,其中 .
计算: .
定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.
(1)如图1, 是 中 的遥望角,若 ,请用含 的代数式表示 .
(2)如图2,四边形 内接于 , ,四边形 的外角平分线 交 于点 ,连结 并延长交 的延长线于点 .求证: 是 中 的遥望角.
(3)如图3,在(2)的条件下,连结 , ,若 是 的直径.
①求 的度数;
②若 , ,求 的面积.
【基础巩固】
(1)如图1,在 中, 为 上一点, .求证: .
【尝试应用】
(2)如图2,在 中, 为 上一点, 为 延长线上一点, .若 , ,求 的长.
【拓展提高】
(3)如图3,在菱形 中, 是 上一点, 是 内一点, , , , , ,求菱形 的边长.
, 两地相距200千米.早上 货车甲从 地出发将一批物资运往 地,行驶一段路程后出现故障,即刻停车与 地联系. 地收到消息后立即派货车乙从 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往 地.两辆货车离开各自出发地的路程 (千米)与时间 (小时)的函数关系如图所示.(通话等其他时间忽略不计)
(1)求货车乙在遇到货车甲前,它离开出发地的路程 关于 的函数表达式.
(2)因实际需要,要求货车乙到达 地的时间比货车甲按原来的速度正常到达 地的时间最多晚1个小时,问货车乙返回 地的速度至少为每小时多少千米?