如图,在平面直角坐标系xOy中,抛物线交y轴于点C,对称轴与x轴交于点D,顶点为M,设点P(x,y)是第一象限内该抛物线上的一个动点,直线PE绕点P旋转,与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出点E的坐标;若不存在,请说明理由。
如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙0的切线.(2)如果⊙0的半径为5,sin∠ADE=,求BF的长.
某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x > 40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元) |
x |
销售量y(件) |
|
销售玩具获得利润w(元) |
(2)在(1)条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?
(3)在(1)条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
2013年12月13日凌晨1点26分,某地煤矿发生瓦斯爆炸事故,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米)
如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):
(1)利用网格确定该圆弧所在圆的圆心D点的位置,并写出D点的坐标为;
(2)连接AD、CD,则⊙D的半径为,∠ADC的度数为;
(3)若扇形DAC是一个圆锥的侧面展开图,求该圆锥底面半径.
如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.
(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AB=2AD=4,求BD的长.