阅读下列材料:
我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+Bx+C=0的距离(d)计算公式是:d= .
例:求点P(1,2)到直线y= x-
的距离d时,先将y=
x-
化为5x-12y-2=0,再由上述距离公式求得d=
=
.
解答下列问题:
如图2,已知直线y=-x-4与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
(1)求点M到直线AB的距离.
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.
如图,是某广告公司为某种商品设计的商标图案,若图案小正方形的边长都是1,求阴影部分的面积?
解答题。(第一题4分,后面每题5分,共24分)
1、一个多项式加上,再减去
得
,求这个多项式。
先化简,再求值:(共4分)其中
上海股民杨百万上星期五交易结束时买进某公司股票1000股,每股50 元,下表为本周内每日该股的涨跌情况 (星期六、日股市休市) (单位:元)
星期 |
一 |
二 |
三 |
四 |
五 |
每股涨跌 |
+4 |
+4.5 |
-1 |
2.5 |
-5 |
星期三收盘时,每股是多少元
本周内每股最高价多少元?最低价是多少元?
已知买进股票还要付成交金额2‰ 的手续费,卖出时还需付成交额2‰ 的手续费和1‰交易税,如果在星期五收盘前将全部股票卖出,他的收益情况如何?(注意:‰不是百分号,是千分号)
已知,求
的值