阅读材料并回答问题:(本题8分)
我们知道,乘法公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如:,就可以用图1或图2等图形的面积表示.
(1)请写出图3所表示的代数恒等式: ;
(2)试画一个几何图形,使它的面积表示:;
(3)请仿照上述方法另写一个含有,
的代数恒等式,并画出与它对应的几何图形.
如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角
∠ACD=60°.求接线柱AB的长.
已知,求代数式
的值.
解不等式组:
已知抛物线y=x2-4x+5,求出它的对称轴和顶点坐标.
(本题12分)如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?直接写出猜想结论,不需说明理由.