如图①,一条笔直的公路上有A、B、C三地,B.C两地相距150千米,甲、乙两辆汽车分别从B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B两地.甲、乙两车到A地的距离y1、y2(千米)与行驶时间x(时)的关系如图②所示.根据图像进行以下探究:
(1)请在图①中标出A地的位置,并作简要的文字说明;
(2)求图②中M点的坐标,并解释该点的实际意义;
(3)在图②中补全甲车的函数图像,求甲车到A地的距离y1与行驶时间x的函数表达式;
(4)A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.
点A(-1,4)和点B(-5,1)在平面直角坐标系中的位置如图所示.
(1)将点A、B分别向右平移5个单位,得到点A1、B1,请画出四边形AA1B1B;
(2)画一条直线,将四边形AA1B1B分成两个全等的图形,并且每个图形都是轴对称图形.
(1)求x的值:4(x+1) =64
(2)计算:+
如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线
经过点C,交y轴于点G.
(1)求C,D坐标;
(2)已知抛物线顶点上,且经过C,D,若抛物线与y交于点M连接MC,设点Q是线段下方此抛物线上一点,当点Q运动到什么位置时,△MCQ的面积最大?求出此时点Q的坐标和面积的最大值.
(3)将(2)中抛物线沿直线平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?若存在,请求 出此时抛物线的解析式;若不存在,请说明理由.
如图1,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE.
(1)若AF是△ABE的中线,且AF=5,AE=6,连结DF,求DF的长;
(2)若AF是△ABE的高,延长AF交BC于点G.
①如图2,若点E是AC边的中点,连结EG,求证:AG+EG=BE;
②如图3,若点E是AC边上的动点,连结DF.当点E在AC边上(不含端点)运动时,∠DFG的大小是否改变,如果不变,请求出∠DFG的度数;如果要变,请说明理由.
定义符号的含义为:当
时,
;当
时,
.如:
,
.
(1)求;
(2)已知, 求实数
的取值范围;
(3)当时,
.直接写出实数
的取值范围.