已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.
(1)求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值.若是.请求出该定值;若不是.请说明理由。
先化简,再求值
(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-
.
分解因式:3ax2+6axy+3ay2.
先阅读,再回答问题:
如果x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2,x1x2与系数a,b,c的关系是:x1+x2=-,x1x2=
.例如:若x1,x2是方程2x2-x-1=0的两个根,则x1+x2=-
=-
=
,x1x2=
=
=-
.
若x1,x2是方程2x2+x-3=0的两个根,(1)求x1+x2,x1x2
(2)求+
的值.(3) 求(x1-x2)2.
如图,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.
(1)判断直线PD是否为⊙O的切线,并说明理由;
(2)如果∠BDE= 60°,OD=,求PO的长.