(本小题满分14分)已知椭圆:,右焦点,点在椭圆上.(Ⅰ)求椭圆的标准方程; (Ⅱ)已知直线与椭圆交于两点,为椭圆上异于的动点.(1)若直线的斜率都存在,证明:;(2)若,直线分别与直线相交于点,直线与椭圆相交于点(异于点), 求证:,,三点共线.
设数列满足:. (1)求证:数列是等比数列(要指出首项与公比); (2)求数列的通项公式.
己知函数,在处取最小值. (1)求的值; (2)在中,分别是的对边,已知,求角.
已知. (1)若,求的坐标; (2)设,若,求点坐标.
已知向量,,函数的图像与直线的相邻两个交点之间的距离为. (1)求的值; (2)求函数在上的单调递增区间.
在中,已知. (1)求角的值; (2)若,求的面积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号