(本小题满分14分)已知椭圆:
,右焦点
,点
在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线与椭圆
交于
两点,
为椭圆
上异于
的动点.
(1)若直线的斜率都存在,证明:
;
(2)若,直线
分别与直线
相交于点
,直线
与椭圆
相交
于点(异于点
), 求证:
,
,
三点共线.
分别指出下列复合命题的形式及构成它的简单命题:
(1)3是质数或合数.
(2)他是运动员兼教练员.
(3)相似三角形不一定是全等三角形.
你能写出下列命题p的非(否定)吗?
(1)p:100既能被4整除又能被5整除
(2)p:三条直线两两相交
(3)p:一元二次方程至多有两个解
(4)p:
函数的定义域为集合
,函数
的定义域为集合
. (1)判定函数
的奇偶性,并说明理由.
(2)问:是
的什么条件(充分非必要条件 、必要非充分条件、充要条件、既非充分也非必要条件)? 并证明你的结论.
已知:a、b、c是互不相等的非零实数.
求证:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
已知:
,
:
且是
的必要不充分条件,求实数
的取值范围。