如图,在棱长为的正方体
中,
为
的中点,
为
上任意一点,
为
上任意两点,且
的长为定值,则下面的四个值中不为定值的是 ( )
A.点![]() ![]() |
B.三棱锥![]() |
C.直线![]() ![]() |
D.二面角![]() |
(本小题满分12分)已知函数,
.
(1)判定在
上的单调性;
(2)求在
上的最小值;
(3)若,
,求实数
的取值范围.
(本小题满分14分)如图,椭圆的焦点在x轴上,左右顶点分别为
A1,A,上顶点B,抛物线C1,C2分别以A1,B为焦点,其顶点均为坐标原点O,C1与C2相交于直线
上一点P.
(1)求椭圆C及抛物线C1,C2的方程;
(2)若动直线l与直线OP垂直,且与椭圆C交于不同两点M,N,已知点,求
的最小值.
(本小题满分12分)已知函数
(1)当m=2时,求曲线在点(1,f(1))处的切线方程;
(2)若时,不等式
恒成立,求实数m的取值范围.
(本小题满分12分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
(本小题满分12分)已知是递增的等差数列,满足
(1)求数列的通项公式和前n项和公式;
(2)设数列对
均有
…+
成立,求数列
的通项公式.