阅读下列材料:
解答“已知x-y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:
解:因为x-y=2,所以x=y+2.
因为x>1,所以y+2>1.
因为y<0,所以-1<y<0. ①
同理得1<x<2. ②
有①+ ②得-1+1<x+y<0+2,
所以x+y的取值范围是0<x+y<2.
请按照上述方法,完成下列问题:
(1)已知x-y=3,且x>2,y<1,则x+y的取值范围是_____________________。
(2)已知y>1,x<-1,若x-y=a成立,求x+y的取值范围(结果用含a的式子表示)。
计算:+(-5)2-(
-
)°
如图,在平面直角坐标系中,一次函数的图象与
轴,
轴交于
、
两点,
,
,过点
作
于点
,点
从点
出发,沿
方向运动,过点
作
于点
,过点
作
,交
于点
,当点
与点
重合时点
停止运动.设
.
(1)、求点的坐标
(2)、用含的代数式表示
;
(3)、是否存在点,使
为等腰三角形?若存在,请求出所有满足要求的
的值,若不存在,请说明理由.
如图,在中,
以AC为直径作⊙O,交AB边于点D,过点O作OE∥AB,交BC边于点E.
(1)试判断ED与⊙O位置关系,并给出证明;
(2)如果⊙O的半径为,求AB的长.
牛奶对人体益处在现代社会越来越受到人们的认可,某商场在“3.15”那天对牛奶进行促销活动,同时对销售A、B、C三种品牌袋装牛奶的情况进行了统计,绘制了条形和扇形统计图.根据图中信息解答下列问题:
(1)哪一种品牌牛奶的销售量最大?
(2)补全图㈠中的条形统计图.
(3)写出A品牌牛奶在图㈡中所对应的圆心角的度数.
一个布袋中有7个红球和13个白球,它们除颜色外都相同.
(1)求从袋中摸出一个球是红球的概率;
(2)现从袋中取走若干个白球,并放入相同数量的红球.搅拌均匀后,要使从袋中摸出一个球是红球的概率是,问取走了多少个白球?(要求通过列式或列方程解答)