(本小题满分12分)如图, 在直角坐标系xOy中,一次函数y=-x+m(m为常数)的图像与x轴交于A(-3,0),与y轴交于点C。以直线x=-1为对称轴的抛物线y=a
+bx+c(a,b,c为常数,且a>0)经过A,C两点,与x轴正半轴交于点B.
(1)求一次函数及抛物线的函数表达式。
(2)已知在对称轴上是否存在一点P,使得PBC的周长最小,若存在,请求出点P的坐标.
(3)点D是线段OC上的一个动点(不与点O、点C重合),过点D作DE‖PC交x轴于点E,连接PD、PE。设CD的长为m, △PDE的面积为S。求S与m之间的函数关系式。并说明S是否存在最大值,若存在,请求出最大值:若不存在,请说明理由。
有一句谚语说:“捡了芝麻,丢了西瓜。”意思是说有些人办事只抓一些无关紧要的小事,却忽略了具有重大意义的大事。据测算,5万粒芝麻才200克,你能换算出1粒芝麻有多少克吗?可别“占小便宜吃大亏”噢!(把你的结果用科学记数法表示)
计算与化简
(1) 计算:
(2) 计算:
(3)计算:
(4)计算:
(5)先化简,再求值:,其中
2012年7月6日在湖南省展览馆举行了长沙动漫展,很多中学生也对动漫产生了浓厚
的兴趣,某动漫公司决定在假期举行一次中学生动漫画展,经调查发现,活动最低票价
为10元,如果以10元票价开放,平均每天有100个学生来观看,若票价每提高1元,
则相应减少10个参观者。
(1)写出平均每天观看动漫展的学生人数y(单位:人)与票价x (x为整数,单位:元)之间的关系;
(2)如果要使每天总收入为910元,票价应定为多少元?
如 图,⊙O内切于△ABC,切点分别为D、E、F。已知∠B=50°,∠C=60°,连接D E、D F,求∠EDF。
如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45º.
求证:CD是⊙O的切线.