游客
题文

(本小题满分12分)如图,在长方体ABCD-A1B1C1D1中,AA1=AB=2AD=2,E为AB的中点,F为D1E上的一点,D1F=2FE.

(Ⅰ)证明:平面平面
(Ⅱ)求二面角的平面角的余弦值.

科目 数学   题型 解答题   难度 中等
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

在数列中,,并且对于任意n∈N*,都有
(1)证明数列为等差数列,并求的通项公式;
(2)设数列的前n项和为,求使得的最小正整数.

已知矩形与正三角形所在的平面互相垂直, 分别为棱的中点,,

(1)证明:直线平面
(2)求二面角的大小.

已知向量.
(1)当时,求的值;
(2)设函数,已知在△ABC中,内角A、B、C的对边分别为,若,求 ()的取值范围.

已知直线过椭圆的右焦点F,抛物线:的焦点为椭圆的上顶点,且直线交椭圆两点,点、F、在直线上的射影依次为点.
(1)求椭圆的方程;
(2)若直线交y轴于点,且,当变化时,探求
的值是否为定值?若是,求出的值,否则,说明理由;
(3)连接,试探索当变化时,直线是否相交于定点?

已知函数
(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据
(2)当时,若关于的不等式恒成立,试求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号