.设椭圆E: (a,b>0)过M(2,
) ,N(
,1)两点,O为坐标原点,(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
在中,角
的对边分别为
,
,
的面积为
.
(1)求,
的值;
(2)求的值.
已知向量
(1) 若求
的值;
(2) 设,求
的取值范围.
已知函数,
,其中
.
(1)设函数,若
在区间
是单调函数,求
的取值范围;
(2)设函数,是否存在
,对任意给定的非零实数
,存在惟一的非零实数
(
),使得
成立?若存在,求
的值;若不存在,请说明理由.
在平面直角坐标系中,已知点
,点P是动点,且三角形
的三边所在直线
的斜率满足.
(1)求点P的轨迹的方程;
(2)设Q是轨迹上异于点
的一个点,若
,直线
与
交于点M,探究是否存点P使得
和
的面积满足
,若存在,求出点P的坐标;若不存在,说明理由.
设为数列
的前
项和,对任意的
,都有
为常数,且
.
(1)求证:数列是等比数列;
(2)设数列的公比
,数列
满足
,求数列
的通项公式;
(3)在满足(2)的条件下,求数列的前
项和
.