.设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
已知正方体. (Ⅰ)求证:平面平面; (Ⅱ)求直线与所成角的大小.
(本题14分)已知函数. (1)若,试用定义证明:在上单调递增; (2)若,当时不等式恒成立,求的取值范围.
(本题15分) 如图,已知抛物线,点是轴上的一点,经过点且斜率为的直线与抛物线相交于两点. (1)当点在轴上时,求证线段的中点轨迹方程; (2)若(为坐标原点),求的值.
(本题15分)如图,三棱锥中,底面,是正三角形,,,是的中点. (1)求证:平面; (2)设二面角的大小为,求的值.
(本题14分)已知数列满足:,. (1)求数列的通项公式; (2)若,求数列的前项和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号