下表提供了某厂节油降耗技术发行后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.
X |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)(参考公式:,
)
已知矩形中ABCD,,
(1)若,求
(2)求与
夹角的余弦值.
已知,不等式
的解集是
(Ⅰ)求a的值;
(Ⅱ)若 存在实数解,求实数
的取值范围。
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线 的参数方程为
(t为参数,
),曲线C的极坐标方程为
.
(Ⅰ)求曲线C的直角坐标方程。
(Ⅱ)设直线 与曲线C相交于A,B两点,当a变化时,求
的最小值
如图,圆O的直径AB= 10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C、D,过点P作AP的垂线,交直线AC于点E,交直线AD于点F.
(Ⅰ)求证:PEC=
PDF
(Ⅱ)求PEPF的值
已知函数 的定义域是
,
是
的导函数,且
在
上恒成立
(Ⅰ)求函数 的单调区间。
(Ⅱ)若函数 ,求实数a的取值范围
(Ⅲ)设 是
的零点 ,
,求证:
.