(本题7分)阅读下列材料:
一般地,n个相同的因数a相乘记为an,记为an.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).
(1)计算以下各对数的值:
log24= ,log216= ,log264= .
(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;
(3)由(2)的结果,你能归纳出一个一般性的结论吗?
logaM+logaN= ;(a>0且a≠1,M>0,N>0)
(4)根据幂的运算法则:an•am=an+m以及对数的含义说明上述结论成立.
某检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:千米):
第一次 |
第二次 |
第三次 |
第四次 |
第五次 |
第六次 |
第七次 |
-3 |
+8 |
-9 |
+10 |
+4 |
-6 |
-2 |
(1)在第几次行驶时距A地最远?
(2)收工时距A地多远?
(3)若每千米耗油0.3升,每升汽油需7.2元,问检修小组工作一天需汽油费多少元?
请你把五个数,
,
,0,
表示在数轴上,并用“<”把它们连接起来.
类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在□ABCD中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若,求
的值.
(1)尝试探究
在图1中,过点E作交BG于点H,则AB和EH的数量关系是,CG和EH的数量关系是,
的值是
(2)类比延伸
如图2,在原题的条件下,若(m>0),则
的值是 (用含
的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F,若,
(
,
),则
的值是 (用含a、b的代数式表示).
如图,在中,
,点
在
所在的直线上运动,作
(
按逆时针方向).若点
在线段
上运动,
交
于
.
(1)求证:;
(2)当是等腰三角形时,求
的长.
某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元。
(1)填表(不需化简)
时间 |
第一个月 |
第二个月 |
清仓时 |
单价(元) |
80 |
40 |
|
销售量(件) |
200 |
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?