为了提高学生书写汉字的能力,增强保护汉字的意识,某市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?
(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.
(满分l2分)暑假期间,小明和父母一起开车到距家200 km的景点旅游.出发前,汽车油箱内储油45L;当行驶l50 km时,发现油箱剩余油量为30 L.
(1)已知油箱内余油量y(L)是行驶路程x(km)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3 L时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.
(满分l0分)如图,△ABC是等边三角形,点D是AC的中点,延长BC到点E,使CE=CD.
(1)用尺规作图的方法,过点D作DM⊥BE,垂足为M(不写作法,保留作图痕迹);
(2)求证:BM=EM.
(每小题8分,共16分)
(1)计算:︱-2︱+2sin30°-(-)2+(tan45°)-1;
(2)先化简,再求值:,其中a=tan60°-l.
(每小题7分,共14分)
(1)解方程:x2—6x+1=0;
(2)解方程:=
.
(满分l6分)如图5—9,已知点O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0)。
(1)求点B的坐标;
(2)若二次函数y=ax2+bx+c的图象经过A,B,O三点,求此二次函数的解析式;
(3)在(2)中的二次函数图象的OB段(不包括点O,B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由。