(本小题满分13分)已知函数,方程
在
上的解按从小到大的顺序排成数列
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列
的前
项和为
,求
的表达式.
已知曲线:
,若矩阵
对应的变换将曲线
变为曲线
,求曲线
的方程.
如图,,
是半径为
的圆
的两条弦,它们相交于
的中点
,若
,
,求
的长.
设等差数列的前
项和为
,已知
,
.
(1)求;
(2)若从中抽取一个公比为
的等比数列
,其中
,且
,
.
①当取最小值时,求
的通项公式;
②若关于的不等式
有解,试求
的值.
已知函数,
.
(1)若,则
,
满足什么条件时,曲线
与
在
处总有相同的切线?
(2)当时,求函数
的单调减区间;
(3)当时,若
对任意的
恒成立,求
的取值的集合.
在平面直角坐标系中,已知过点
的椭圆
:
的右焦点为
,过焦点
且与
轴不重合的直线与椭圆
交于
,
两点,点
关于坐标原点的对称点为
,直线
,
分别交椭圆
的右准线
于
,
两点.
(1)求椭圆的标准方程;
(2)若点的坐标为
,试求直线
的方程;
(3)记,
两点的纵坐标分别为
,
,试问
是否为定值?若是,请求出该定值;若不是,请说明理由.