游客
题文

在平面直角坐标系中,过点轴作垂线,垂足为,连接.双曲线经过斜边的中点,与边交于点

(1)求反比例函数的解析式;
(2)求△的面积.

科目 数学   题型 解答题   难度 中等
知识点: 平行线分线段成比例
登录免费查看答案和解析
相关试题

在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.
(1)求y与x满足的函数关系式(不要求写出x的取值范围);
(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?

已知在平面直角坐标系中的位置如图所示。

(1)分别写出图中点和点的坐标;
(2)画出绕点A按逆时针方向旋转90°后的
(3)在(2)的条件下,求点旋转到点所经过的路线长(结果保留

已知方程的一个根是3,求m的值及方程的另一个根.

解方程:(+4)2=5(+4).

(本小题满分10分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发沿折线段BA—AD—DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD—DA—AB于点E.点P,Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).

(1)当点P到达终点C时,求t的值,并指出此时BQ的长;
(2)当点P运动到AD上时,t为何值能使PQ∥DC?
(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD,DA上时,S与t的函数关系式;(不必写出t的取值范围)
(4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号