设函数 f ( x ) = ( x + a ) ln x , g ( x ) = x 2 e x . 已知曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线与直线 2 x - y = 0 平行. (Ⅰ)求 a 的值; (Ⅱ)是否存在自然数 k ,使得方程 f ( x ) = g ( x ) 在 ( k , k + 1 ) 内存在唯一的根?如果存在,求出 k ;如果不存在,请说明理由; (Ⅲ)设函数 m ( x ) = m i n { f ( x ) , g ( x ) } ( m i n { p , q } 表示, p , q 中的较小值),求 m ( x ) 的最大值.
已知f(x)= (1)求f(-x); (2)求常数a的值,使f(x)在区间(-∞,+∞)内处处连续.
已知函数f(x)= (1)f(x)在x=0处是否连续?说明理由; (2)讨论f(x)在闭区间[-1,0]和[0,1]上的连续性.
已知函数f(x)= (1)讨论f(x)在点x=-1,0,1处的连续性; (2)求f(x)的连续区间。
求证:方程x=asinx+b(a>0,b>0)至少有一个正根,且它不大于a+b.
已知函数f(x)=, (1)求f(x)的定义域,并作出函数的图像; (2)求f(x)的不连续点x0; (3)对f(x)补充定义,使其是R上的连续函数.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号