设函数
. 已知曲线
在点
处的切线与直线
平行.
(Ⅰ)求
的值;
(Ⅱ)是否存在自然数
,使得方程
在
内存在唯一的根?如果存在,求出
;如果不存在,请说明理由;
(Ⅲ)设函数
(
表示,
中的较小值),求
的最大值.
如图,空间四边形ABCD中,,
,
分别是AB,BC,CD的中点,求证:
(1)AC∥平面;
(2)BD∥平面.
已知函数f ()=
, 若
2)=1;
(1) 求a的值; (2)解不等式.
(本小题满分12分)已知,其中
均为实数,
(Ⅰ)求的极值;
(Ⅱ)设,
求证:对恒成立;
(Ⅲ)设,若对
给定的
,在区间
上总存在
使得
成立,求m的取值范围.
(本小题满分12分)如图,椭圆的右焦点与抛物线
的焦点重合,过
且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足
(O为坐标原点),求实数t的取值范围.
(本小题满分12分)已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1—ABCE的主视图与左视图.
(Ⅰ)求证:直线BE⊥平面D1AE;
(Ⅱ)求点A到平面D1BC的距离.