设某校新、老校区之间开车单程所需时间为 , 只与道路畅通状况有关,对其容量为 的样本进行统计,结果如下:
(Ⅰ)求
的分布列与数学期望
;
(Ⅱ)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.
已知二阶矩阵有特征值
及对应的一个特征向量
,并且矩阵
对应的变换将点
变换成
.求矩阵
.
(Ⅰ)把点的直角坐标化为极坐标;
(Ⅱ)求圆心在极轴上,且过极点和点的圆的极坐标方程.
(本小题满分10分)选修4—5:不等式选讲。设正有理数是
的一个近似值,令
.
(I)若,求证:
;
(II)求证:比
更接近于
.
(本小题满分10分)选修4—4:坐标系与参数方程。平面直角坐标系中,直线
的参数方程是(
为参数),以坐标原点为极点,
轴的正半轴为极轴,建立极坐
标系,已知曲线的极坐标方程为
.
(I)求直线的极坐标方程;
(II)若直线与曲线
相交于
、
两点,求
.
请考生在(22)、(23)、(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号右侧的方框涂黑.
(22)(本小题满分10分)选修4—1:几何证明选讲。如图,⊙O是△的外接圆,D
是的中点,BD交AC于E.
(I)求证:CD=DE·DB;
(II)若,O到AC的距离为1,求⊙O的半径
.