选修4-4:坐标系与参数方程
在直角坐标版权法
吕,直线
的参数方程为
(
为参数),以原点为极点,
轴的正半轴为极轴建立极坐标系,
的极坐标方程为
.
(Ⅰ)写出
的直角坐标方程;
(Ⅱ)
为直线
上一动点,当
到圆心
的距离最小时,求点
的坐标.
已知函数(x∈R).
(1)求函数的单调区间和极值;
(2)已知函数的图象与函数
的图象关于直线x=1对称,证明当x>1时,
.
已知函数.
(1)求函数的单调区间,并指出其增减性;
(2)若关于x的方程至少有三个不相等的实数根,求实数a的取值范围.
在数列中,已知
,
(
.
(1)求证:是等差数列;
(2)求数列的通项公式
及它的前
项和
.
已知函数在区间
上的最大值为2.
(1)求常数的值;
(2)在中,角
,
,
所对的边是
,
,
,若
,
,
面积为
.求边长
.
如图,曲线是以原点O为中心、
为焦点的椭圆的一部分,曲线
是以O为顶点、
为焦点的抛物线的一部分,A是曲线
和
的交点
且
为钝角.
(1)求曲线和
的方程;
(2)过作一条与
轴不垂直的直线,分别与曲线
依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问
是否为定值?若是求出定值;若不是说明理由.