某市 A , B 两所中学的学生组队参加辩论赛, A 中学推荐3名男生,2名女生, B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 (1)求 A 中学至少有1名学生入选代表队的概率. (2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设 X 表示参赛的男生人数,求 X 得分布列和数学期望.
(理科10分)在△中,所对的边分别为,满足成等差数列,,求点的轨迹方程. (文科10分)设0<a,b,c<1,求证:(1-a)b,(1-b)c,(1-c)a不同时大于.
已知点P在椭圆上,焦点为F1、F2,且∠F1PF2=30°,求△F1PF2的面积.
设,求证:成立的充要条件是xy≥0.
已知.若“”和“”同为假命题,求x值.
求下列标准方程 (1)椭圆的两个焦点坐标分别为(0,2),(0,-2),且点P(,)在椭圆上. (2)椭圆长轴是短轴的3倍,且过点A(4,0). (3)双曲线经过点(-3,2),且一条渐近线为y=x. (4)双曲线离心率为,且过点(4,).
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号