已知函数 .
(Ⅰ)求
的单调区间;
(Ⅱ)设曲线
与
轴正半轴的交点为
,曲线在点
处的切线方程为
,求证:对于任意的正实数
,都有
;
(Ⅲ)若方程
(
为实数)有两个正实数根
且
,求证:
.
设f(x)=x2-bx+c,不等式f(x)<0的解集是(-1,3),若f(7+|t|)>f(1+t2),求实数t的取值范围.
关于x的不等式|x-3|+|x-4|<a的解集不是空集,求a的取值范围.
解不等式:x+|2x-1|<3.
求函数y=(x>-1)的值域.
在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为
(a>b>0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=
时,这两个交点重合.
(1)分别说明C1,C2是什么曲线,并求出a与b的值.
(2)设当α=时,l与C1,C2的交点分别为A1,B1,当α=-
时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.