(本题满分18分,第1小题4分,第2小题6分,第3小题8分)
已知数列的前
项和为
,且
,
(1)若,求数列
的前
项和
;
(2)若,
,求证:数列
为等比数列,并求出其通项公式;
(3)记,若对任意的
,
恒成立,求实数
的取值范围.
(本小题满分12分)已知直线
(1)若直线的斜率等于2,求实数
的值;
(2)若直线分别与x轴、y轴的正半轴交于A、B两点,O是坐标原点,求△AOB面积的最大值及此时直线的方程.
(本小题满分10分)选修4—5:不等式选讲
已知不等式.
(1)若,求不等式的解集;
(2)若已知不等式的解集不是空集,求的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程
在平面直角坐标系中,曲线
的参数方程为
(其中
为参数,
).在极坐标系(以坐标原点
为极点,以x轴非负半轴为极轴)中,曲线
的极坐标方程为
.
(1)把曲线和
的方程化为直角坐标方程;
(2)若曲线上恰有三个点到曲线
的距离为
,求曲线
的直角坐标方程.
(本小题满分10分)选修4—1:几何证明选讲
如图,是直角三角形,
.以
为直径的圆
交
于点
,点
是
边的中点.连接
交圆
于点
求证:
(1)四点共圆;
(2).
(本小题满分12分)已知函数.
(1)当且
,
时,试用含
的式子表示
,并讨论
的单调区间;
(2)若有零点,
,且对函数定义域内一切满足
的实数
有
.
①求的表达式;
②当时,求函数
的图象与函数
的图象的交点坐标.