(满分14分)几何模型:
如图1, ,O是BD的中点,求证:
;
模型应用:
(温馨提示:模型应用是指应用模型结论直接解题)
(1)如图2,在梯形ABCD中,,点E是腰DC的中点,AE平分
,求证:AE⊥EF;
(2)如图3,在⊙O中,AB是⊙O的直径,,点E是OD的中点,点O到AC的距离为1
,试求阴影部分的面积.
如图,为了知道空中一静止的广告气球A的高度,小宇在B处测得气球A的仰角为18°,他向前走了20m到达C处后,再次测得气球A的仰角为45°,已知小宇的眼睛距离地面1.6m,求此时气球A距离地面的高度(结果精确到0.1m,参考数据:tan18°≈0.3249).
在△ABC中,AD是BC边上的高,∠C=45°,,AD=1.求BC的长.
一辆汽车从B处出发,沿斜坡爬行30米到达A处,若坡度,求坡角α和汽车上升的高度h.
如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)
如图所示,有一艘船向东航行,上午9时,在灯塔A的西南方向,距A60km的B处,上午11时到达灯塔A的正南方向的C处,则此船航行的速度是多少?