(本题8分)某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:
(1)该校共有 名学生;
(2)在图1中,“三等奖”随对应扇形的圆心角度数是 ;
(3)将图2补充完整;
(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.
列方程或方程组解应用题:
在平谷区桃花节来临之际,某中学团委从八年级学生中派出160人参加街道清洁工作,除八年级团员全部参加外,还派出一些非团员参加.已知派出的非团员人数是团员人数的2倍还多人.求参加清洁工作的团员和非团员各多少人?
已知:如图,在中,∠BAC=90°,AB=AC,D是
边上一点,
,AD=DE.
求证:BD=EC
已知,求
的值.
如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.
如图1,在△ABC中,AB=BC=5,AC="6." △ECD是△ABC沿CB方向平移得到的,连结AE,AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,并证明你的结论;
(2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,以点P、Q、R为顶点的三角形与△BOC相似?