如图,抛物线y=﹣x2+bx+c交x轴于点A,交y轴于点B,已知经过点A,B的直线的表达式为y=x+3.
(1)求抛物线的函数表达式及其顶点C的坐标;
(2)如图①,点P(m,0)是线段AO上的一个动点,其中﹣3<m<0,作直线DP⊥x轴,交直线AB于D,交抛物线于E,作EF∥x轴,交直线AB于点F,四边形DEFG为矩形.设矩形DEFG的周长为L,写出L与m的函数关系式,并求m为何值时周长L最大;
(3)如图②,在抛物线的对称轴上是否存在点Q,使点A,B,Q构成的三角形是以AB为腰的等腰三角形?若存在,直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
列方程(组 解应用题:
为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?
2018年4月12日,菏泽国际牡丹花会拉开帷幕,菏泽电视台用直升机航拍技术全程直播.如图,在直升机的镜头下,观测曹州牡丹园 处的俯角为 , 处的俯角为 ,如果此时直升机镜头 处的高度 为200米,点 、 、 在同一条直线上,则 、 两点间的距离为多少米?(结果保留根号)
如图, , , .请写出 与 的数量关系,并证明你的结论.
如图,抛物线 与 轴交于 、 两点,抛物线上另有一点 在 轴下方,且使 .
(1)求线段 的长度;
(2)设直线 与 轴交于点 ,点 是 的中点时,求直线 和抛物线的解析式;
(3)在(2)的条件下,直线 下方抛物线上是否存在一点 ,使得四边形 面积最大?若存在,请求出点 的坐标;若不存在,请说明理由.
(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在 中,点 在线段 上, , , , ,求 的长.
经过社团成员讨论发现,过点 作 ,交 的延长线于点 ,通过构造 就可以解决问题(如图 .
请回答: , .
(2)请参考以上解决思路,解决问题:
如图3,在四边形 中,对角线 与 相交于点 , , , , ,求 的长.