某班体育委员小华对本班近期体育测验成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:
(1)频数、频率分布表中= ,
= ;
(2)补全频数分布直方图;
(3)班主任准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?
“中国梦”关乎每个人的幸福生活.为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:
等级 |
成绩(用s表示) |
频数 |
频率 |
A |
![]() |
x |
0.08 |
B |
![]() |
35 |
y |
C |
s<80 |
11 |
0.22 |
合计 |
50 |
1 |
请根据上表提供的信息,解答下列问题:
(1)表中x的值为,y的值为;
(2)将本次参赛作品获得A等级的学生依次用表示,现该校决定从本次参赛作品获得A等级的学生中,随机抽取两名学生谈谈他们的参赛体会,请用树形图或列表法求恰好抽到学生
和
的概率.
已知:如图,在正方形ABCD中,E为CD边上的一点,F为BC的延长线上一点,CE=CF。
⑴△BCE与△DCF全等吗?说明理由;
⑵若∠BEC=60o,求∠EFD。
⑴解方程:(1); (2)解不等式组
并求该不等式组的整数解。
无论k取任何实数,对于直线都会经过一个固定的点
,我们就称直线
恒过定点
.
(1)无论取任何实数,抛物线
恒过定点
,直接写出定点A的坐标;
(2)已知△ABC的一个顶点是(1)中的定点,且∠B,∠C的角平分线分别是y轴和直线
,求边BC所在直线的表达式;
(3)求△ABC内切圆的半径.
如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A重合,其它顶点均不重合,连接BE、DG.
(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;
(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;
(3)如图3,如果=45°,AB =2,AE=
,求点G到BE的距离.