已知:Rt△ABC和Rt△DBE,AB=BC,DB=EB,D在AB上,连接AE,AC,如图1延长CD交AE于k.
(1)求证:AE=CD,AE⊥CD;
(2)类比:如图2所示,将(1)中的Rt△DBE绕点B逆时针旋转一个锐角,问(1)中线段AE,CD之间数量关系和位置关系还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)拓展:在图2中,将“AB=BC,DB=EB”改为“AB=kBC,DB=kEB,k>1”其它条件均不变,如图3所示,问(1)中线段AE,CD间的数量关系和位置关系怎样?请直接写出线段AE,CD间的数量关系和位置关系.
如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.
可证:AE⊥BF;
(1)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM,如图2,若AM和BF相交
于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.
(2)将△BCF沿BF对折,得到△BPF,如图3,延长FP交BA的延长线于点Q,求sin∠BQP的值;
如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线的图像经过BC的中点D,且与AB交于点E,连接DE。若点F是边上一点,且△FBC∽△DEB,求直线FB的解析式.
如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=8,tan∠BDC=.求线段CF的长.
荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手
电筒多用20元,若用400元购买台灯和用160元购买手电筒。则购买台灯的个数是购买手电筒个数的—半.经
商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠.如果荣庆公司需要手电筒的
个数是台灯个数的2倍还多8个.且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多
可购买多少个该品牌台灯?
如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.当△ABC满足什么条件时,四边形ADCF是菱形?为什么?