在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且.(Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值.
如图,在正三棱柱中,分别为中点. (1)求证:平面; (2)求证:平面平面.
如图,已知点,是单位圆上一动点,且点是线段的中点. (1)若点在轴的正半轴上,求; (2)若,求点到直线的距离.
已知函数在上是增函数,且. (1)求的取值范围; (2)求函数在上的最大值; (3)设,,求证:.
已知函数满足且在时函数取得极值. (1)求的值; (2)求函数的单调区间; (3)求函数在区间上的最大值的表达式.
已知数列满足, (1)求,,,; (2)归纳猜想出通项公式,并且用数学归纳法证明; (3)求证能被15整除.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号