巳知二次函数f(x)=ax2+bx+c (a>0,b,c∈R).设集合A={x∈R| f(x)=x},B={x∈R| f(f(x))= f(x)} ,C={x∈R| f(f(x))="0}" .
(Ⅰ)当a=2,A={2}时,求集合B;
(Ⅱ)若,试判断集合C中的元素个数,并说明理由.
在一个特定的时间段内,以点为中心的
海里以内的海域被设为警戒水域,点
正北55海里处有一雷达观测站
,某时刻测得一艘匀速直线行驶的船只位于点
北偏东
且与点
相距
海里的位置
,经过40分钟又测得该船已经驶到点
北偏东
(其中
且与点
相距
海里的
处.
求该船的行驶速度;
若该船不改变航行
方向继续行驶,判断它是否会进入警戒线水域,并说明理由.
如图为一个缆车示意图,该缆车半径为4.8m,圆上最低点与地面距离为0.8m,60秒转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面距离是h.
(1)求h与θ间的函数关系式;
(2)设从OA开始转动,经过t秒后到达OB,求h与t之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)(x∈R)的部分图象如图所示.
(1)求f(x)的表达式;
(2)设g(x)=f(x)-f,求函数g(x)的最小值及相应的x的取值集合.
已知函数y=|cosx+sinx|.
(1)画出函数在x∈[-,]的简图;
(2)写出函数的最小正周期和单调递增区间;试问:当x为何值时,函数有最大值?最大值是多少?
(3)若x是△ABC的一个内角,且y2=1,试判断△ABC的形状.
已知函数f(x)=4sin2(x+)+4sin2x-(1+2),x∈R.
(1)求函数f(x)的最小正周期和图象的对称中心;
(2)求函数f(x)在区间上的值域.