(本小题满分12分)已知函数
(1)若,求
的取值范围
(2)证明:
(本题共10分)已知函数,当
时,有极大值
。
(Ⅰ)求的值;
(Ⅱ)求函数的极小值。
(本题共10分)已知函数。
(Ⅰ)若曲线在
处的切线与直线
垂直,求
的值;
(Ⅱ)若函数在区间(
,
)内是增函数,求
的取值范围。
(本小题满分14分)
已知函数.
(1)求函数的最小值;
(2)证明:对任意恒成立;
(3)对于函数图象上的不同两点
,如果在函数
图象上存在点
(其中
)使得点
处的切线
,则称直线
存在“伴侣切线”.特别地,当
时,又称直线
存在“中值伴侣切线”.试问:当
时,对于函数
图象上不同两点
、
,直线
是否存在“中值伴侣切线”?证明你的结论.
(本小题满分13分)
已知抛物线,过点
的直线
与抛物线交于
、
两点,且直线
与
轴交于点
.(1)求证:
,
,
成等比数列;
(2)设,
,试问
是否为定值,若是,求出此定值;若不是,请说明理由.
(本小题满分12分)
已知函数.
(1)若函数的图象在
处的切线斜率为
,求实数
的值;
(2)在(1)的条件下,求函数的单调区间;
(3)若函数在
上是减函数,求实数
的取值范围.