(本小题满分14分)已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量,
,
(1)若//
,求证:ΔABC为等腰三角形;
(2)若⊥
,边长c = 2,角C =
,求ΔABC的面积 .
设函数。
(1)当a=l时,求函数的极值;
(2)当a2时,讨论函数
的单调性;
(3)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求
实数m的取值范围。
平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,一2),点C满足,其中
,且
.
(1)求点C的轨迹方程;
(2)设点C的轨迹与椭圆交于两点M,N,且以MN为直径的圆过原点,求证:
为定值;
(3)在(2)的条件下,若椭圆的离心率不大于,求椭圆长轴长的取值范围。
如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF//AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.
(1)求证:NC∥平面MFD;
(2)若EC=3,求证:ND⊥FC;
(3)求四面体NFEC体积的最大值.
某种产品按质量标准分成五个等级,等级编号依次为1,2,3,4,5.现从一批产品中随机抽取20件,对其等级编号进行统计分析,得到频率分布表如下:
等级 |
1 |
2 |
3 |
4 |
5 |
频率 |
a |
0.2 |
0.45 |
b |
c |
(1)若所抽取的20件产品中,等级编号为4的恰有3件,等级编号为5的恰有2件,求a,b,c的值;
(2)在(1)的条件下,将等级编号为4的3件产品记为xl,x2,x3,等级编号为5的2件产品记为yl ,y2,现从xl,x2,x3,yl,y2这5件产品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件品的级编号恰好相同的概率。
曲线在点
处的切线与x轴交点的横坐标为an.
(1)求an;
(2)设,求数到
的前n项和Sn.