游客
题文

如图所示,在平面直角坐标系中,点A,B,C的坐标分别为A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D,使四边形ABCD是平行四边形,求点D的坐标.

科目 数学   题型 解答题   难度 中等
知识点: 坐标与图形变化-旋转
登录免费查看答案和解析
相关试题

光明中学初三(2)班的同学积极响应学生会创办“书香班级”活动的倡议,将家中藏书带到学校,班里共收到文学类图书300本、科技类图书400本,文学类书籍平均每人的本数比科技类书籍少两本.问初三(2)班有多少名同学?

(1)已知:如图1,在Rt△ABC中,∠C=90°,BC=4,tanB=.求sinA的值.

(2)已知:如图2,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA.求证:△ADE≌△BCE;

(1)解不等式组:(2)化简:

如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.

(1)求抛物线的解析式;
(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由

请同学们认真阅读、研究,完成“类比猜想”及后面的问题.
习题解答:
习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.

解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,
∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.
∴∠E′AF=90°﹣45°=45°=∠EAF,
又∵AE′=AE,AF=AF
∴△AE′F≌△AEF(SAS)
∴EF=E′F=DE′+DF=BE+DF.
习题研究
观察分析:观察图(1),由解答可知,该题有用的条件是①ABCD是四边形,点E、F分别在边BC、CD上;②AB=AD;③∠B=∠D=90°;④∠EAF=∠BAD.
类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B=∠D时,还有EF=BE+DF吗?
研究一个问题,常从特例入手,请同学们研究:如图13(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?
(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?
归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号