在如图所示的直角坐标系中,矩形区域
内有垂直于纸面向外的匀强磁场,磁感应强度大小为B=5.0×10-2T;第一象限内有沿
方向的匀强电场,电场强度大小为
N/C。已知矩形区域
边长为0.06m,ab边长为0.20m。在
边中点
处有一放射源,某时刻,放射源沿纸面向磁场中各方向均匀地辐射出速率均为
m/s的某种带正电粒子,带电粒子质量
kg,电荷量
kg,不计粒子重力,求:(计算结果保留两位有效数字)
(1)粒子在磁场中运动的半径;
(2)从轴上射出的粒子中,在磁场中运动的最短路程为多少?
(3)放射源沿-方向射出的粒子,从射出到从
轴离开所用的时间。
小球A和B的质量分别为mA和mB,且mA>mB.在某高处将A和B先后从静止释放.小球A与水平地面碰撞后向上弹回,在释放处下方与释放处距离为H的地方恰好与正在下落的小球B发生正碰.设所有碰撞都是弹性的,碰撞时间极短.求小球A、B碰撞后B上升的最大高度.
两个质量都是M=0.4kg的砂箱A、B并排放在光滑的水平桌面上,一颗质量为m=0.1kg的子弹以v0=140m/s的水平速度射向A,如图所示.射穿A后,进入B并同B一起运动,测得A、B落点到桌边缘的水平距离sA:sB=1:2,求子弹在砂箱A、B中穿行时系统一共产生的热量Q.
如图所示,内壁光滑半径为R的圆形轨道,固定在竖直平面内.质量为m1的小球静止在轨道最低点,另一质量为m2的小球(两小球均可视为质点)从内壁上与圆心O等高的位置由静止释放,运动到最低点时与m1发生碰撞并粘在一起.求:
(1)小球m2刚要与m1发生碰撞时的速度大小;
(2)碰撞后,m1、m2能沿内壁运动所能达到的最大高度(相对碰撞点).
如图所示,在光滑水平面上有两个并排放置的木块A和B,已知mA="500" g,mB="300" g,有一质量为80 g的小铜球C以25 m/s的水平初速开始,在A表面滑动,由于C和A,B间有摩擦,铜块C最后停在B上,B和C一起以2.5 m/s的速度共同前进,求:
(1)木块A的最后速度vA′;
(2)C在离开A时速度vC′.
如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ.使木板与重物以共同的速度v0向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短.求木板从第一次与墙碰撞到再次碰撞所经历的时间.设木板足够长,重物始终在木板上.重力加速度为g.